£42m funding for energy storage research

£42m funding for energy storage research

Up to £42 million of government funding has been made available for energy storage research.

The funding, which has been announced by the Faraday Institution, will see four UK-based consortia conduct application-inspired research aimed at overcoming battery challenges to accelerate the electric vehicle (EV) revolution.

According to the Institute, this research will put the UK on the map as being at the forefront of battery technology worldwide. It has the potential to radically increase the speed with which we are able to make the move to electric vehicles, as well as the speed with which we can decarbonize our energy supply, with obvious benefits to the environment.

The Faraday Institution is the UK's independent national battery research institute, and was established as part of the government's £246m investment in battery technology through the Industrial Strategy. Its formation was announced in October 2017 by the Business Secretary Greg Clark.

The Faraday Institution's goal is to make the UK the go-to place and world leader for battery technology research and it has a clear mission to ensure the UK is well placed to take advantage of the future economic opportunities from this emerging technology.

Business Minister Richard Harrington said: "With 200,000 electric vehicles set to be on UK roads by the end of 2018 and worldwide sales growing by 45% in 2016, investment in car batteries is a massive opportunity for Britain and one that is estimated to be worth £5 billion by 2025.

"Through our flagship Industrial Strategy and its Future of Mobility and Clean Growth Grand Challenges, we are committed to making Britain the 'go-to' destination for the development and deployment of this game-changing technology.

"Government investment, through the Faraday Institution, in the projects announced today will deliver valuable research that will help us seize the economic opportunities presented by battery technology and our transition to a low-carbon economy."

The topics for the four projects were chosen in consultation with industry, who will partner closely with each of them:

  • Extending battery life - Led by the University of Cambridge with nine other university and 10 industry partners, this project will examine how environmental and internal battery stresses (such as high temperatures, charging and discharging rates) damage electric vehicle (EV) batteries over time. Results will include the optimization of battery materials and cells to extend battery life (and hence EV range), reduce battery costs, and enhance battery safety. With Cambridge, university partners include University of Glasgow, University College London, Newcastle University, Imperial College London, University of Strathclyde, University of Manchester, University of Southampton, University of Liverpool and University of Warwick.
  • Battery system modelling - Imperial College London (ICL) will lead a consortium of six other university and 17 industry partners to equip industry and academia with new software tools to understand and predict battery performance, by connecting understanding of battery materials at the atomic level all the way up to an assembled battery pack. The goal is to create accurate models for use by the automotive industry to extend lifetime and performance, especially at low temperatures. With ICL, university partners include University of Southampton, University of Warwick, University of Oxford, Lancaster University, University of Bath, and University College London.
  • Recycling and reuse - A project led by the University of Birmingham, including seven other academic institutions and 14 industrial partners, will determine the ways in which spent lithium batteries can be recycled. With the aim to recycle 100% of the battery, the project will look how to reuse the batteries and their materials, to make better use of global resources, and ultimately increase the impact of batteries in improving air quality and decarbonisation. With Birmingham, university partners include the University of Leicester, Newcastle University, Cardiff University, University of Liverpool, Oxford Brookes University, University of Edinburgh, and the Science and Facilities Technology Council.
  • Next generation solid state batteries - The University of Oxford will lead an effort with six other university partners and nine industrial partners to break down the barriers that are preventing the progression to market of solid-state batteries, that should be lighter and safer, meaning cost savings and less reliance on cooling systems. The ambition of this project is to demonstrate the feasibility of a solid state battery with performance superior to Li-ion in EV applications. With Oxford, university partners will include the University of Liverpool, University of Glasgow, University of Strathclyde, University of Cambridge, University College London, and the University of St. Andrews.

Peter B. Littlewood, founding executive chair of the Faraday Institution, said: "To deliver the much needed improvement in air quality in our cities and achieve our aspiration for cleaner energy targets we need to shift to electric vehicles quickly. These research programmes will help the UK achieve this. To be impactful on increasing energy density, lowering cost, extending lifetime, and improving battery safety requires a substantial and focused effort in fundamental research. Through steady investment in basic research on specific societal challenges identified by industry and government, the UK will become a world-leading powerhouse in energy storage."

DISCUSSION

Battery 550x250

Northern Powergrid and Siemens are to work with academics at Newcastle University as part of the government's new £65 million battery research institute.

Turbinecloseup6bs 550x250

Five projects will bring together "some of the leading minds in this field"

Electricityboltsbs 550x250

Siemens and the University of Oxford have been awarded funding from Innovate UK to develop a feasibility study to assess the value of creating a virtual private wire network (VPWN) to centrally manage the energy use of a site with multiple locations and energy sources.